Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Crit Rev Immunol ; 44(5): 87-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618731

RESUMO

Despite advancements in the field of cancer therapeutics, the five-year survival rate remains low in oral cancer patients. Therefore, the effective therapeutics are needed against oral cancer. Also, several studies including ours, have shown severely suppressed function and number of NK cells in oral cancer patients. In this review, we discuss the approach to inhibit the tumor growth and metastasis by direct killing or NK cell-mediated tumor differentiation. This review also provides an overview on supercharging NK cells using osteoclasts and probiotic bacteria, and their efficacy as cancer immunotherapeutic in humanized-BLT mice.


Assuntos
Neoplasias Bucais , Humanos , Animais , Camundongos , Neoplasias Bucais/terapia , Imunoterapia , Diferenciação Celular , Células Matadoras Naturais , Ativação Linfocitária
2.
Crit Rev Immunol ; 44(5): 71-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618730

RESUMO

Natural killer (NK) cells are innate lymphoid cells that exhibit high levels of cytotoxicity against NK-specific targets. NK cells also produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Produce various cytokines, and interact with T cells, B cells, and dendritic cells to effectively serve as frontliners of the innate immune system. Moreover, NK cells constitute the second most common immune cell in the liver. These properties have drawn significant attention towards leveraging NK cells in treating liver cancer, especially hepatocellular carcinoma (HCC), which accounts for 75% of all primary liver cancer and is the fourth leading cause of cancer-related death worldwide. Notable anti-cancer functions of NK cells against HCC include activating antibody-dependent cell cytotoxicity (ADCC), facilitating Gasdermin E-mediated pyroptosis of HCC cells, and initiating an antitumor response via the cGAS-STING signaling pathway. In this review, we describe how these mechanisms work in the context of HCC. We will then discuss the existing preclinical and clinical studies that leverage NK cell activity to create single and combined immunotherapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Imunidade Inata , Neoplasias Hepáticas/terapia , Células Matadoras Naturais , Citocinas , Imunoterapia
3.
Cells ; 13(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38334605

RESUMO

Our previous studies have introduced osteoclasts (OCs) as major activators of NK cells. It was found that OCs exhibit the capabilities of inducing cell expansion as well as increasing the cytotoxic activity of NK cells by granule release and increasing the secretion of TNF-α and TRAIL, leading to increased lysis of tumors in short-term as well as long-term periods, respectively. OC- induced expanded NK cells were named supercharged NK cells (sNK) due to their significantly high functional activity as well as their significantly higher cell expansion rate. It is, however, unclear whether the OC-mediated effect in NK cells is specific or whether other cytotoxic immune cells can also be expanded and activated by OCs. We chose to focus on γδ T cells and pan T cells, which also include CD8+ T cells. In this paper, we report that OCs are capable of expanding and functionally activating both γδ T cells and pan T cells. Expanded γδ T and pan T cells were capable of secreting high levels of INF-γ, albeit with different dynamics to those of NK cells, and, moreover, they are unable to kill NK-specific targets. Since we used humanized-BLT (hu-BLT) mice as a model of human disease, we next determined whether NK and T cell activation through OCs is also evident in cells obtained from hu-BLT mice. Similar to humans, OCs were capable of increasing the cell expansion and secretion of IFN-γ in the culture of either NK or T cells from hu-BLT mice, providing yet further evidence that these mice are appropriate models to study human disease. Therefore, these studies indicated that CD3+ T or γδ T cells can proliferate and be supercharged by OCs similar to the NK cells; thus, they can be used individually or in combination in the cell therapy of cancers.


Assuntos
Antineoplásicos , Neoplasias , Probióticos , Humanos , Animais , Camundongos , Osteoclastos , Células Matadoras Naturais , Imunoterapia , Neoplasias/terapia
4.
Crit Rev Immunol ; 44(2): 61-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305337

RESUMO

This study is focused on assessing the activation in NK, CD3+ T, and γδ T cells when they interact with osteoclasts (OCs) and monocytes in the presence or absence of zoledronate (ZOL), both in humans and WT mice. OCs resulted in increased IFN-γ secretion in NK, CD3+ T, and γδ T cells, however, the significantly highest increase was seen when cells were co-cultured with ZOL-treated OCs. Our previous studies have demonstrated increased IFN-γ secretion in the peripheral blood-derived immune cells of bisphosphonate-related osteonecrosis of the jaw (BRONJ) mice model. This could be due to increased OCs-induced activation of immune cells with ZOL treatment. We also observed increased IFN-γ secretion in humanized-BLT (hu-BLT) mice NK cells when were co-cultured with OCs or monocytes, and higher IFN-γ secretion levels were seen in the presence of OCs or ZOL-treated OCs. In addition, similar effects on IFN-γ secretion levels of NK, CD3+ T, and γδ T cells were seen whether cells were co-cultured with allogeneic OCs or autologous OCs.


Assuntos
Osteoclastos , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Camundongos , Animais , Ácido Zoledrônico/farmacologia , Monócitos , Linfócitos T
5.
Cell Mol Life Sci ; 81(1): 8, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092995

RESUMO

Cystatin F, a cysteine peptidase inhibitor, is a potent modulator of NK cytotoxicity. By inhibiting granule-mediated cytotoxicity pathway, cystatin F induces formation of non-functional NK cell stage, called split-anergy. We show that N-glycosylation determines the localization and cellular function of cystatin F. Cystatin F mostly exhibited high-mannose glycosylation in U-937 cells, both high-mannose and complex glycosylation in NK-92 and primary NKs, and predominantly complex glycosylation in super-charged NKs. Manipulating N-glycosylation with kifunensine increased high-mannose glycosylation of cystatin F and lysosome localisation, which decreased cathepsin C activity and reduced NK cytotoxicity. Mannose-6-phosphate could significantly reduce the internalization of extracellular cystatin F. By comparing NK cells with different cytotoxic potentials, we found that high-mannose cystatin F was strongly associated with lysosomes and cathepsin C in NK-92 cell line. In contrast, in highly cytotoxic super-charged NKs, cystatin F with complex glycosylation was associated with the secretory pathway and less prone to inhibit cathepsin C. Modulating glycosylation to alter cystatin F localisation could increase the cytotoxicity of NK cells, thereby enhancing their therapeutic potential for treating cancer patients.


Assuntos
Antineoplásicos , Cistatinas , Humanos , Glicosilação , Manose , Catepsina C/metabolismo , Células Matadoras Naturais/metabolismo
6.
Front Immunol ; 14: 1284669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954598

RESUMO

Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the fourth-leading cause of all cancer-related deaths around the world. Liver transplantation, surgery, and local ablation are curative therapies for early-stage HCC. However, post-treatment outcomes can vary based on histopathologic stage. Poorly-differentiated HCC are associated with higher rates of tumor progression and lower overall survival compared to well-differentiated HCC after therapy. In this study, we aimed to characterize the cancer stem cell (CSC) profile of histopathologically-proven well and poorly-differentiated HCCs in an in-vitro environment. We characterized the stem-like profile of each type of HCC based on their surface markers and susceptibility to NK cell-mediated cytotoxicity. Methods: Flow cytometry was used to quantify differential expression of MHC-class I, CD54, and CD44 between well- and poorly-differentiated HCCs. Primary untreated NK cells, IL-2 stimulated primary NK cells, and supercharged (sNK) cell-mediated cytotoxicity was assessed against well- and poorly-differentiated HCCs. IFN-γ supernatant from each respective NK cell experimental arm was also used to induce differentiation of HCCs. Finally, we characterized the temporal NK effector cell cytotoxicity using real-time quantitative analysis of imaging and impedance (eSight study). Results: Poorly-differentiated HCCs demonstrated low surface expression of MHC-class I and CD54, and high expression of CD44. Treatment of NK cells secreted IFN-γ or IFN-γ cytokine induced differentiation in HCCs. Poorly-differentiated HCCs in comparison to well-differentiated HCC were more susceptible to NK cell-mediated cytotoxicity in primary NK cells, IL-2 stimulated primary NK cells, and sNK cells. sNK cells induced significantly higher cytotoxicity against well-differentiated HCCs in comparison to untreated or IL-2-stimulated primary NK cells. These findings were recapitulated with real-time quantitative imaging analysis. Conclusions: Poorly-differentiated HCCs were found to have surface marker patterns of CSCs, making them highly susceptible to NK cell-based immunotherapy. NK-cell based therapy can potentially be leveraged as a neoadjuvant or adjuvant therapy in poorly-differentiated HCCs. Supercharged NK cells, which can be rapidly expanded to therapeutic levels, are uniquely capable of lysing both poorly- and well-differentiated HCCs. This finding suggests that sNK cells not only exhibit enhanced features against NK cells' targets but also are capable of activating T cells to induce cytotoxicity against well-differentiated HCCs with high expression of MHC class I.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Interleucina-2/farmacologia , Interleucina-2/metabolismo , Células Matadoras Naturais/metabolismo , Imunoterapia
7.
Crit Rev Immunol ; 43(2): 13-25, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37938193

RESUMO

In this paper, we review a number of in vitro and in vivo studies regarding the efficacy of supercharged NK (sNK) cell therapy in elimination or treatment of cancer. We have performed studies using six different types of cancer models of oral, pancreatic, glioblastoma, melanoma, hepatic and ovarian cancers using hu-BLT mice. Our in vitro studies demonstrated that primary NK cells preferentially target cancer stem-like cells (CSCs)/poorly differentiated tumors whereas sNK cells target both CSCs/poorly-differentiated and well-differentiated tumors significantly higher than primary activated NK cells. Our in vivo studies in humanized-BLT mice showed that sNK cells alone or in combination with other cancer therapeutics prevented tumor growth and metastasis. In addition, sNK cells were able to increase IFN-γ secretion and cytotoxic function by the immune cells in bone marrow, spleen, gingiva, pancreas and peripheral blood. Furthermore, sNK cells were able to increase the expansion and function of CD8+ T cells both in in vitro and in vivo studies. Overall, our studies demonstrated that sNK cells alone or in combination with other cancer therapeutics were not only effective against eliminating aggressive cancers, but were also able to increase the expansion and function of CD8+ T cells to further target cancer cells, providing a successful approach to eradicate and cure cancer.


Assuntos
Glioblastoma , Melanoma , Neoplasias Ovarianas , Animais , Feminino , Camundongos , Medula Óssea , Modelos Animais de Doenças , Células Matadoras Naturais , Fígado , Neoplasias Ovarianas/terapia , Pâncreas
8.
Crit Rev Immunol ; 43(1): 1-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522557

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurological disease characterized by the progressive loss of motor neurons in the brain and spinal cord. No effective therapeutic strategies have been established thus far, and therefore there is a significant unmet need for effective therapeutics to arrest the disease and reverse the pathologies induced by it. Although the cause of ALS is not well-defined, it appears to be heterogenous. Currently over 20 genes have been found to be associated with ALS. Family history can only be found in 10% of ALS patients, but in the remaining 90% no association with family history is found. The most common genetic causes are expansion in the C9orf72 gene and mutations in superoxide dismutase 1, TDP-43, and FUS. In our recent study, we also found mutations in TDP43 and FUS in ALS patients. To understand the pathogenesis of the disease, we set ourselves the task of analyzing the phenotype and function of all key immune effectors in ALS patients, comparing them with either a genetically healthy twin or healthy individuals. Our study demonstrated a significant increase in functional activation of NK and CD8+ T cytotoxic immune effectors and release of significant IFN-γ not only by the effector cells but also in the serum of ALS patients. Longitudinal analysis of CD8+ T cell-mediated IFN-γ secretion from ALS patients demonstrated continued and sustained increase in IFN-γ secretion with periods of decrease which coincided with certain treatments; however, the effects were largely short-lived. N-acetyl cysteine (NAC), one of the treatments used, is known to block cell death; however, even though such treatment was able to block most of the proinflammatory cytokines, chemokines, and growth factor release, it was not able to block IFN-γ and TNF-α, the two cytokines we had demonstrated previously to induce differentiation of the cells. In this review, we discuss the contribution of cytotoxic effector cells, especially primary NK cells, supercharged NK cells (sNK), and the contribution of sNK cells in expansion and functional activation of CD8+ T cells to memory/effector T cells in the pathogenesis of ALS. Potential new targeted therapeutic strategies are also discussed.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/farmacologia , Citocinas/metabolismo
9.
Crit Rev Immunol ; 43(1): 13-26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522558

RESUMO

Our recent studies indicated that amyotrophic lateral sclerosis (ALS) patients suffer from significantly elevated levels of interferon-gamma (IFN-γ) secretion by natural killer (NK) and CD8+ T cells, which may be responsible for the immune-pathologies seen in central nervous system and in peripheral organs of the patients. In order to counter such elevated induction of IFN-γ in patients we designed a treatment strategy to increase anti-inflammatory cytokine interleukin-10 (IL-10) by the use of probiotic strains which significantly increase the levels of IL-10. Therefore, in this paper we demonstrate disease specific functions of Al-Pro (AJ3) formulated for the adjunct treatment of auto-immune diseases including ALS, and compared the function with CA/I-Pro (AJ4) for the treatment of cancer and viral diseases, and NK-CLK (AJ2) for maintenance of immune balance and promotion of disease prevention. The three different formulations of probiotic bacteria have distinct profiles of activation of peripheral blood mononuclear cells (PBMCs), NK, and CD8+ T cells, and their induced activation is different from those mediated by either IL-2 or IL-2 + anti-CD16 monoclonal antibodies (mAbs) or IL-2 + anti-CD3/CD28 mAbs. IL-2 + anti-CD16 mAb activation of PBMCs and NK cells had the highest IFN-γ/IL-10 ratio, whereas IL-2 combination with sAJ4 had the next highest followed by IL-2 + sAJ2 and the lowest was seen with IL-2 + sAJ3. Accordingly, the highest secretion of IFN-γ was seen when the PBMCs and NK cells were treated with IL-2 + sAJ4, intermediate for IL-2 + sAJ2 and the lowest with IL-2 + sAJ3. The levels of IFN-γ induction and the ratio of IFN-γ to IL-10 induced by different probiotic bacteria formulation in the absence of IL-2 treatment remained much lower when compared to those treated in the presence of IL-2. Of note is the difference between NK cells and CD8+ T cells in which synergistic induction of IFN-y by IL-2 + sAJ4 was significantly higher in NK cells than those seen by CD8+ T cells. Based on these results, sAJ3 should be effective in alleviating auto-immunity seen in ALS since it will greatly regulate the levels and function of IFN-γ negatively, decreasing overactivation of cytotoxic immune effectors and prevention of death in motor neurons.


Assuntos
Esclerose Lateral Amiotrófica , Antineoplásicos , Humanos , Interleucina-10/farmacologia , Esclerose Lateral Amiotrófica/terapia , Leucócitos Mononucleares , Interleucina-2 , Citocinas , Interferon gama , Antineoplásicos/farmacologia , Anticorpos Monoclonais
10.
Crit Rev Immunol ; 43(1): 27-39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522559

RESUMO

Amyotrophic lateral sclerosis (ALS) is an auto-immune neurodegenerative disorder affecting the motor-neurons. The causes of ALS are heterogeneous, and are only partially understood to date. We studied percentage and function of immune cell subsets in particular natural killer (NK) and CD8+ T cells in an ALS patient and compared the results to those obtained from his genetically identical healthy twin in a longitudinal study. We found several basic mechanisms which were potentially involved in the disease induction and progression. Our findings demonstrate that ALS patient's peripheral blood contained higher NK and B cells and, lower T cell percentages compared with the healthy twin brother's peripheral blood. Significantly increased interferon-gamma secretion by anti-CD3/28 monoclonal antibody-treated peripheral blood mononuclear cells, and sorted CD8+ T cells were observed in the ALS patient, suggesting that hyper-responsiveness of T cell compartment could be a potential mechanism of ALS progression. Significant increase in NK cell function due to genetic mutations in ALS associated genes may partly be responsible for the increase expansion and function of CD8+ T cells with effector/memory phenotype, in addition to direct activation and expansion of antigen specific T cells by such mutations. Weekly N-acetyl cysteine infusion to block cell death in patient in addition to a number of other therapies listed in this paper were not effective, and even though the treatments might have extended the patient's life, it was not curative. Therefore, activated CD8+ T and NK cells are likely cells targeting motor neurons in the patient, and strategies should be designed to decrease the aggressive nature of these cells to achieve longer lasting therapeutic benefits.

11.
Front Immunol ; 14: 1132807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197660

RESUMO

Introduction and methods: In this study we report that sequential treatment of supercharged NK (sNK) cells with either chemotherapeutic drugs or check-point inhibitors eliminate both poorly differentiated and well differentiated tumors in-vivo in humanized-BLT mice. Background and results: sNK cells were found to be a unique population of activated NK cells with genetic, proteomic, and functional attributes that are very different from primary untreated or IL-2 treated NK cells. Furthermore, NK-supernatant differentiated or well-differentiated oral or pancreatic tumor cell lines are not susceptible to IL-2 activated primary NK cell-mediated cytotoxicity; however, they are greatly killed by the CDDP and paclitaxel in in-vitro assays. Injection of one dose of sNK cells at 1 million cells per mouse to aggressive CSC-like/poorly differentiated oral tumor bearing mice, followed by an injection of CDDP, inhibited tumor weight and growth, and increased IFN-γ secretion as well as NK cell-mediated cytotoxicity substantially in bone marrow, spleen and peripheral blood derived immune cells. Similarly, the use of check point inhibitor anti-PD-1 antibody increased IFN-γ secretion and NK cell-mediated cytotoxicity, and decreased the tumor burden in-vivo, and tumor growth of resected minimal residual tumors from hu-BLT mice when used sequentially with sNK cells. The addition of anti-PDL1 antibody to poorly differentiated MP2, NK-differentiated MP2 or well-differentiated PL-12 pancreatic tumors had different effects on tumor cells depending on the differentiation status of the tumor cells, since differentiated tumors expressed PD-L1 and were susceptible to NK cell mediated ADCC, whereas poorly differentiated OSCSCs or MP2 did not express PD-L1 and were killed directly by the NK cells. Conclusions: Therefore, the ability to target combinatorially clones of tumors with NK cells and chemotherapeutic drugs or NK cells with checkpoint inhibitors at different stages of tumor differentiation may be crucial for successful eradication and cure of cancer. Furthermore, the success of check point inhibitor PD-L1 may relate to the levels of expression on tumor cells.


Assuntos
Antígeno B7-H1 , Neoplasias Bucais , Animais , Camundongos , Antígeno B7-H1/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Interleucina-2/metabolismo , Proteômica , Células Matadoras Naturais , Neoplasias Bucais/patologia
13.
Front Endocrinol (Lausanne) ; 14: 1111627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742414

RESUMO

Introduction: The potential mechanisms governing drug induced osteonecrosis of the jaw (ONJ) is not well understood, and is one of the objectives of this study. Thus, we tested the release of IFN-γ within different immune compartments including bone marrow and gingivae upon treatment with zoledronic acid (ZOL) and denosumab which are known to induce ONJ in susceptible individuals. Methods: We used humanized-BLT mouse model for the in-vivo studies reported in this paper. To determine the effects of zoledronic acid and denosumab on IFN-γ secretion and NK cell-mediated cytotoxicity; peripheral blood, bone marrow, spleen and gingiva were obtained after the injection of ZOL and denosumab in mice. Results: Percentages of B cells are much higher in wild-type mice whereas the proportions of immune subsets in humans and reconstituted hu-BLT peripheral-blood are similar. Therefore, hu-BLT mice are preferable model to study human disease, in particular, immune-pathologies induced by ZOL and denosumab. Both agents resulted in a severe suppression of IFN-γ in the gingiva, whereas they heightened the release of IFN-γ and NK cell-mediated cytotoxicity by the BM-derived immune cells. ZOL increased the IFN-γ secretion by the spleen and peripheral blood immune cells, whereas denosumab decreased the release IFN-γ by these cells significantly. Discussion: ZOL and denosumab may likely suppress IFN-γ secretion in gingiva through different mechanisms. In addition, to the suppression of IFN-γ secretion, denosumab mediated effect could in part be due to the decrease in the bone resorptive function of osteoclasts due to the induction of antibody dependent cellular cytotoxicity and lysis of osteoclasts, whereas ZOL is able to mediate cell death of osteoclasts directly. Suppression of IFN-gamma in gingiva is largely responsible for the inhibition of immune cell function, leading to dysregulated osteoblastic and osteoclastic activities. Restoration of IFN-gamma in the local microenvironment may result in establishment of homeostatic balance in the gingiva and prevention of osteonecrosis of jaw.


Assuntos
Denosumab , Interferon gama , Osteonecrose , Ácido Zoledrônico , Animais , Humanos , Camundongos , Medula Óssea , Denosumab/efeitos adversos , Difosfonatos , Gengiva , Osteonecrose/induzido quimicamente , Ácido Zoledrônico/efeitos adversos
14.
Cells ; 11(21)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36359827

RESUMO

Amyotrophic lateral sclerosis (ALS) is an auto-immune neurodegenerative disorder affecting the motor-neuron system. The causes of ALS are heterogeneous, and are only partially understood. We studied different aspects of immune pathogenesis in ALS and found several basic mechanisms which are potentially involved in the disease. Our findings demonstrated that ALS patients' peripheral blood contains higher proportions of NK and B cells in comparison to healthy individuals. Significantly increased IFN-γ secretion by anti-CD3/28 mAbs-treated peripheral blood mononuclear cells (PBMCs) were observed in ALS patients, suggesting that hyper-responsiveness of T cell compartment could be a potential mechanism for ALS progression. In addition, elevated granzyme B and perforin secretion at a single cell level, and increased cytotoxicity and secretion of IFN-γ by patients' NK cells under specific treatment conditions were also observed. Increased IFN-γ secretion by ALS patients' CD8+ T cells in the absence of IFN-γ receptor expression, and increased CD8+ T cell effector/memory phenotype as well as increased granzyme B at the single cell level points to the CD8+ T cells as potential cells in targeting motor neurons. Along with the hyper-responsiveness of cytotoxic immune cells, significantly higher levels of inflammatory cytokines including IFN-γ was observed in peripheral blood-derived serum of ALS patients. Supernatants obtained from ALS patients' CD8+ T cells induced augmented cell death and differentiation of the epithelial cells. Weekly N-acetyl cysteine (NAC) infusion in patients decreased the levels of many inflammatory cytokines in peripheral blood of ALS patient except IFN-γ, TNF-α, IL-17a and GMCSF which remained elevated. Findings of this study indicated that CD8+ T cells and NK cells are likely culprits in targeting motor neurons and therefore, strategies should be designed to decrease their function, and eliminate the aggressive nature of these cells. Analysis of genetic mutations in ALS patient in comparison to identical twin revealed a number of differences and similarities which may be important in the pathogenesis of the disease.


Assuntos
Esclerose Lateral Amiotrófica , Linfócitos T CD8-Positivos , Linfócitos T Citotóxicos , Humanos , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Granzimas/metabolismo , Leucócitos Mononucleares/metabolismo , Linfócitos T Citotóxicos/metabolismo
15.
J Cancer ; 13(13): 3463-3475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313040

RESUMO

Over the past two decades, the global efforts for the early detection and intervention of prostate cancer seem to have made significant progresses in the basic researches, but the clinic outcomes have been disappointing: (1) prostate cancer is still the most common non-cutaneous cancer in Europe in men, (2) the age-standardized prostate cancer rate has increased in nearly all Asian and African countries, (3) the proportion of advanced cancers at the diagnosis has increased to 8.2% from 3.9% in the USA, (4) the worldwide use of PSA testing and digital rectal examination have failed to reduce the prostate cancer mortality, and (5) there is still no effective preventive method to significantly reduce the development, invasion, and metastasis of prostate cancer… Together, these facts strongly suggest that the global efforts during the past appear to be not in a correlated target with markedly inconsistent basic research and clinic outcomes. The most likely cause for the inconsistence appears due to the fact that basic scientific studies are traditionally conducted on the cell lines and animal models, where it is impossible to completely reflect or replicate the in vivo status. Thus, we would like to propose the human prostate basal cell layer (PBCL) as "the most effective target for the early detection and intervention of prostate cancer". Our proposal is based on the morphologic, immunohistochemical and molecular evidence from our recent studies of normal and cancerous human prostate tissues with detailed clinic follow-up data. We believe that the human tissue-derived basic research data may provide a more realistic roadmap to guide the clinic practice and to avoid the potential misleading from in vitro and animal studies.

16.
Cell Immunol ; 375: 104526, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500335

RESUMO

We have previously shown that natural killer (NK) cells expand, and increase their function after interaction with cells that exhibit a number of different knock-down genes. We hypothesized that deletion or knockdown of a variety of key genes such as RAG may cause de-differentiation of the cells which could lead to increased NK expansion and function since we have shown previously that NK cells are activated and expanded by less differentiated cells. When comparing the function of NK cells from bone marrow (BM), spleen, pancreas, adipose tissue, and gingiva from WT mice to those from Rag2-/- mice, we observed a significant increase in IFN-γ secretion in all tissues of Rag2-/- mice versus in WT mice, with the exception of the gingivae in which similar levels were observed. After injecting WT mice with zoledronic acid (ZOL) and tooth extraction, immune cells from BM, spleen, and purified NK cells from spleen exhibited very high induction of IFN-γ and NK cell-mediated cytotoxicity with the exception of gingiva in which immune cells exhibited the opposite. In Rag2-/- mice, ZOL injection and tooth extraction stimulated IFN-γ secretion from BM immune cells but inhibited IFN-γ secretion from both spleen and gingivae. In both WT and Rag2-/- mice, immune cells from gingivae exhibited decreased IFN-γ secretion when activated, indicating significant regulation of immune cell function in the gingival microenvironment. However, even though significantly lower induction of IFN-γ was observed in both WT and Rag2-/- gingival cells after ZOL injection, ZOL mediated secretion of IFN-γ was still higher in the gingivae of WT mice when compared to those of Rag2-/- gingival cells. These results suggest an important role for IFN-γ in the pathogenesis of osteonecrosis lesions observed in post-tooth extraction jawbone.


Assuntos
Medula Óssea , Gengiva , Animais , Proteínas de Ligação a DNA/genética , Células Matadoras Naturais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Zoledrônico
17.
Commun Biol ; 5(1): 436, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538218

RESUMO

Glioblastomas remain the most lethal primary brain tumors. Natural killer (NK) cell-based therapy is a promising immunotherapeutic strategy in the treatment of glioblastomas, since these cells can select and lyse therapy-resistant glioblastoma stem-like cells (GSLCs). Immunotherapy with super-charged NK cells has a potential as antitumor approach since we found their efficiency to kill patient-derived GSLCs in 2D and 3D models, potentially reversing the immunosuppression also seen in the patients. In addition to their potent cytotoxicity, NK cells secrete IFN-γ, upregulate GSLC surface expression of CD54 and MHC class I and increase sensitivity of GSLCs to chemotherapeutic drugs. Moreover, NK cell localization in peri-vascular regions in glioblastoma tissues and their close contact with GSLCs in tumorospheres suggests their ability to infiltrate glioblastoma tumors and target GSLCs. Due to GSLC heterogeneity and plasticity in regards to their stage of differentiation personalized immunotherapeutic strategies should be designed to effectively target glioblastomas.


Assuntos
Glioblastoma , Diferenciação Celular , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Imunoterapia Adotiva , Células Matadoras Naturais , Células-Tronco Neoplásicas
18.
Cancer Immunol Immunother ; 71(12): 2929-2941, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35507102

RESUMO

We extended our previous observations with other tumor models to study seven ovarian tumor cell lines-OVCAR3, OVCAR4, OVCAR8, SKOV3, Kuramochi, OAW28, and CaOV3. We found that NK cells targeted and killed poorly differentiated OVCAR8 and CAOV3; these two tumor lines express lower MHC-class I and higher CD44 surface receptors. OVCAR3 and OVCAR4 were more resistant to NK cell-mediated cytotoxicity, and SKOV3, Kuramochi and OAW28 had intermediate sensitivity to NK cell-mediated cytotoxicity, likely representing well-differentiated and moderately differentiated ovarian tumor cell lines, respectively. Similar trends were observed for secretion of IFN-γ by the NK cells when co-cultured with different ovarian tumor cell lines. Treatment with both IFN-γ and TNF-α upregulated MHC-class I in all ovarian tumor cell lines and resulted in tumor resistance to NK cell-mediated cytotoxicity and decreased secretion of IFN-γ in co-cultures of NK cells with tumors cells with the exception of OVCAR8 and CAOV3 which did not upregulate MHC-class I and remained sensitive to NK cell-mediated cytotoxicity and increased secretion of IFN-γ when co-cultured with NK cells. Similarly, treatment with NK cell supernatants induced resistance to NK cell-mediated cytotoxicity in OVCAR4 but not in OVCAR8, and the resistance to killing was correlated with the increased surface expression of MHC-class I in OVCAR4 but not in OVCAR8. In addition, OVCAR4 was found to be carboplatin sensitive before and after treatment with IFN-γ and NK cell supernatants, whereas OVCAR8 remained carboplatin resistant with and without treatment with IFN-γ and NK cell supernatants. Overall, sensitivity to NK cell-mediated killing correlated with the levels of tumor differentiation and aggressiveness, and more importantly, poorly differentiated ovarian tumors were unable to upregulate MHC-class I under the activating conditions for MHC-class I, a feature that was not seen in other tumor models and may likely be specific to ovarian tumors. Such tumors may also pose a significant challenge in elimination by the T cells; however, NK cells are capable of targeting such tumors and can be exploited to eliminate these tumors in immunotherapeutic strategies.


Assuntos
Neoplasias Ovarianas , Fator de Necrose Tumoral alfa , Humanos , Feminino , Fator de Necrose Tumoral alfa/metabolismo , Apoptose , Carboplatina , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Células Matadoras Naturais
19.
Cells ; 11(4)2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35203349

RESUMO

In this paper, we present the role of autologous and allogeneic monocytes from healthy individuals and those of the cancer patients, with a number of distinct cancers, in activating the function of natural killer (NK) cells, in particular, in induction of IFN-γ secretion by the NK cells and the functional capability of secreted IFN-γ in driving differentiation of the tumor cells. In addition, we compared the roles of CD16 signaling as well as sonicated probiotic bacteria AJ2 (sAJ2)-mediated induction and function of IFN-γ-mediated differentiation in tumor cells. We found that monocytes from cancer patients had lower capability to induce functional IFN-γ secretion by the autologous CD16 mAb-treated NK cells in comparison to those from healthy individuals. In addition, when patient monocytes were cultured with NK cells from healthy individuals, they had lower capability to induce functional IFN-γ secretion by the NK cells when compared to those from autologous monocyte/NK cultures from healthy individuals. Activation by sAJ2 or addition of monocytes from healthy individuals to patient NK cells increased the secretion of functional IFN-γ by the NK cells and elevated its functional capability to differentiate tumors. Monocytes from cancer patients were found to express lower CD16 receptors, providing a potential mechanism for their lack of ability to trigger secretion of functional IFN-γ. In addition to in vitro studies, we also conducted in vivo studies in which cancer patients were given oral supplementation of AJ2 and the function of NK cells were studied. Oral ingestion of AJ2 improved the secretion of IFN-γ by patient derived NK cells and resulted in the better functioning of NK cells in cancer patients. Thus, our studies indicate that for successful NK cell immunotherapy, not only the defect in NK cells but also those in monocytes should be corrected. In this regard, AJ2 probiotic bacteria may serve to provide a potential adjunct treatment strategy.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Probióticos , Bactérias , Humanos , Células Matadoras Naturais , Monócitos , Probióticos/farmacologia
20.
Cancer Immunol Immunother ; 71(5): 1033-1047, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34559307

RESUMO

The majority of the previous reports on NK cells use cross-sectional studies to establish the status of patient NK cell function, however such studies fail to evaluate the immune status of the patients on a continuous basis from the disease-free stage to progression of cancer. In this study, we performed a prospective study of the immune function by continuously monitoring the NK numbers, expansion and function of a pancreatic cancer patient from 1/6/2016 to 2/14/2019. The results indicated that at initial stages of the disease where no overt disease was identified, the patient had consistently higher percentages of NK and B cells and lower percentages of CD3 + T cells in the peripheral blood. The percentages of CD14 + monocytes were similar at the initial stages of the disease, and at the later stages of the disease, it increased and remained higher in the patient when compared to those from healthy donors. The numbers of expanded NK cells and the cytotoxic function, as well as secretion of IFN-γ from primary and osteoclast expanded patient NK cells remained consistently low throughout the years of follow up. Similarly, the majority of cytokines in patient's serum remained lower with the exception of IL-6 which was higher. The IFN-γ secreted from the patients' NK cells had much lower ability to differentiate the poorly differentiated oral tumors as assessed by their lack of ability to upregulate differentiation antigens. Overall, before any evidence of overt disease, patient NK cells exhibited significant dysfunction. Intervention at the stage of no disease or minimal disease may be important for the prevention of pancreatic cancer progression.


Assuntos
Células Matadoras Naturais , Neoplasias Pancreáticas , Estudos Transversais , Citotoxicidade Imunológica , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Estudos Prospectivos , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA